首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20613篇
  免费   3559篇
  国内免费   2784篇
化学   15194篇
晶体学   241篇
力学   1404篇
综合类   179篇
数学   2251篇
物理学   7687篇
  2024年   8篇
  2023年   412篇
  2022年   445篇
  2021年   594篇
  2020年   855篇
  2019年   767篇
  2018年   669篇
  2017年   575篇
  2016年   957篇
  2015年   907篇
  2014年   1154篇
  2013年   1426篇
  2012年   1892篇
  2011年   1943篇
  2010年   1289篇
  2009年   1209篇
  2008年   1397篇
  2007年   1224篇
  2006年   1243篇
  2005年   1030篇
  2004年   832篇
  2003年   699篇
  2002年   682篇
  2001年   566篇
  2000年   466篇
  1999年   558篇
  1998年   379篇
  1997年   342篇
  1996年   414篇
  1995年   350篇
  1994年   301篇
  1993年   234篇
  1992年   211篇
  1991年   184篇
  1990年   157篇
  1989年   133篇
  1988年   119篇
  1987年   81篇
  1986年   73篇
  1985年   54篇
  1984年   37篇
  1983年   31篇
  1982年   15篇
  1981年   19篇
  1980年   10篇
  1979年   2篇
  1966年   1篇
  1963年   1篇
  1957年   5篇
  1936年   3篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
81.
郑金 《物理通报》2021,(4):60-63
给出了单个均匀带电圆环在轴线上各点产生的场强随距离变化的关系式和极值条件以及图像并分析其特点,利用图像叠加法对有关两个均匀带电圆环在轴线上产生电场的问题进行巧妙解答.  相似文献   
82.
Lithium-sulfur batteries (LSBs) with high energy density and low cost have been recognized as one of the most promising next-generation energy storage systems. Although it has taken decades of development, the practical application of LSBs has been hindered by several inherent obstacles, particularly the severe shuttle effect and sluggish reaction kinetics in the sulfur cathode. Various strategies have been proposed to address these problems via rational design of electrode materials and configurations. Freestanding sulfur cathode could be a promising strategy to improve the sulfur mass loading at the cathode level and energy density of LSBs. This minireview will briefly summary the recent advances in freestanding cathodes for LSBs. The advantages and disadvantages of various freestanding cathodes are discussed and the prospects for the development of flexible cathodes are envisioned.  相似文献   
83.
miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.  相似文献   
84.
Journal of Thermal Analysis and Calorimetry - The purpose of this study is to numerically investigate flow field and turbulent heat transfer of hybrid nanofluid, water–DWCNT–TiO2 in a...  相似文献   
85.
Image space analysis is a new tool for studying scalar and vector constrained extremum problems as well as generalized systems. In the last decades, the introduction of image space analysis has shown that the image space associated with the given problem provides a natural environment for the Lagrange theory of multipliers and that separation arguments turn out to be a fundamental mathematical tool for explaining, developing and improving such a theory. This work, with its 3 parts, aims at contributing to describe the state-of-the-art of image space analysis for constrained optimization and to stress that it allows us to unify and generalize the several topics of optimization. In this 1st part, after a short introduction of such an analysis, necessary and sufficient optimality conditions are treated. Duality and penalization are the contents of the 2nd part. The 3rd part deals with generalized systems, in particular, variational inequalities and Ky Fan inequalities. Some further developments are discussed in all the parts.  相似文献   
86.
87.
Thermoset polymer elastomers that are capable of autonomous repairability upon physical damage at ambient temperature are highly desirable because of their thermal and environmental resistance, outstanding mechanical toughness and stability. To aim at this goal, we demonstrated that tris(diethylamino)phosphine was initially proven as an efficient catalyst for the aliphatic disulfide exchange at mild condition. By making use of the aliphatic disulfide bond reshuffling and elasticity of polyurethane elastomers, the inherently cross-linked polysulfide-based poly(thiourethane-urethane) elastomers were prepared and exhibited the ability to mend without extrinsic stimuli in the presence of phosphorus catalyst at room temperature after artificially damaged. The self-healing efficiency via the mechanical recovery approach was investigated to be mainly dependent upon the cross-linking density of polysulfide and hard segments chemistry, which in turns determined the molecular chain diffusion and reshuffling that was corroborated by the stress-relaxation study. The thermoset elastomer based on asymmetric diisocynate showed a maximum self-healing efficiency of 85.6% compared to 71.6% for the elastomer with symmetric monomer building blocks. The self-healable polymer was confirmed to be recyclable and reprocessable through a cut-compression processing cycle under a quite mild pressure and temperature thanks to the disulfide bond reshuffling. Meanwhile, the recycled thermoset elastomer well maintained the mechanical properties to its original material.  相似文献   
88.
Cationic compounds often serve as antibacterial materials for a wide range of applications. However, the relationship of topology−antibacterial activity has been rarely revealed. Herein, three cationic polythioethers (CPTEs) with hyperbranched topologies are well designed and facilely synthesized via an all-click chemistry strategy (including thiol-ene and epoxy-amine additions). These as-prepared CPTEs were found to exhibited outstanding antibacterial activity against Escherichia coli and Staphylococcus aureus with minimum inhibitory concentrations against E. coli of 7.3, 14.6, and 14.6 μg ml−1, and against S. aureus of 14.6, 29.2, and 29.2 μg ml−1, respectively. The antibacterial activity is coincident with their degree of branching (DB, their DB values of 0.81, 0.48, and 0.27), which is mainly attributed to the inherent three-dimensional structure. The present strategy reveals the relationship of polymer topology and antibacterial activity, providing a novel possibility for designing and/or synthesis of high-efficiency antibacterial agents.  相似文献   
89.
The development of improved technologies for biomass processing into transportation fuels and industrial chemicals is hindered due to a lack of efficient catalysts for selective oxygen removal. Here we report that platinum nanoparticles decorated with subnanometer molybdenum clusters can efficiently catalyze hydrodeoxygenation of acetic acid, which serves as a model biomass compound. In contrast with monometallic Mo catalysts that are inactive and monometallic Pt catalysts that have low activities and selectivities, bimetallic Pt–Mo catalysts exhibit synergistic effects with high activities and selectivities. The maximum activity occurs at a Pt to Mo molar ratio of three. Although Mo atoms themselves are catalytically inactive, they serve as preferential binding anchors for oxygen atoms while a catalytic transformation proceeds on neighboring surface Pt atoms. Beyond biomass processing, Pt–Mo nanoparticles are promising catalysts for a wide variety of reactions that require a transformation of molecules with an oxygen atom and, more broadly, in other fields of science and technology that require tuning of surface–oxygen interactions.  相似文献   
90.
Click chemistry focuses on the development of highly selective reactions using simple precursors for the exquisite synthesis of molecules. Undisputedly, the CuI-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most valuable examples of click chemistry, but it suffers from some limitations as it requires additional reducing agents and ligands as well as cytotoxic copper. Here, we demonstrate a novel strategy for the azide–alkyne cycloaddition reaction that involves a photoredox electron-transfer radical mechanism instead of the traditional metal-catalyzed coordination process. This newly developed photocatalyzed azide–alkyne cycloaddition reaction can be performed under mild conditions at room temperature in the presence of air and visible light and shows good functional group tolerance, excellent atom economy, high yields of up to 99 %, and absolute regioselectivity, affording a variety of 1,4-disubstituted 1,2,3-triazole derivatives, including bioactive molecules and pharmaceuticals. The use of a recyclable photocatalyst, solar energy, and water as solvent makes this photocatalytic system sustainable and environmentally friendly. Moreover, the azide–alkyne cycloaddition reaction could be photocatalyzed in the presence of a metal-free catalyst with excellent regioselectivity, which represents an important development for click chemistry and should find versatile applications in organic synthesis, chemical biology, and materials science.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号